The interior angles in triangle ABC are A=82°14'44", B=47°39'54", and C=50°07'34". The distance from A to B has been computed to be 12383.42m. Assuming the average curvature of 6372160m., determine the spherical excess in the triangle. 0.37" 1.42" 0.68" 2.42" Click to Show/Hide Solution \[ e" = \frac{AREA}{R^2 \sin 01"} \] \[ \frac{a}{\sin A} = \frac{c}{\sin C} \] \[ a = \frac{c (\sin A)}{\sin C} \] \[ a = \frac{12383.42m. (\sin 82^{\circ}14'44")}{\sin 50^{\circ}07'34"} \] \[ a = 15988.09m. \] \[ AREA = \frac{ac \sin B}{2} \] \[ AREA = \frac{(15988.09m.)(12383.42m.) \sin 47^{\circ}39'54"}{2} \] \[ AREA = 73178045.23sqm. \] \[ e" = \frac{73178045.23sqm.}{(6372160m.)^2 \sin 01"} \] \[ e" = 0.37 \leftarrow \text{answer} \]