Find the coordinates of a point equidistant from $P_1(1,-6)$, $P_2(5,-6)$, and $P_3(6,-1)$.
- (2,-2)
- (3,-2)
- (3,-3)
- (2,-3)

\[
d_1 = d_2 = d_3
\]
\[
d_1 = d_2
\]
\[
\sqrt{(1-x)^2 + (-6-y)^2} = \sqrt{(5-x)^2 + (-6-y)^2}
\]
\[
(1-x)^2 + (-6-y)^2 = (5-x)^2 + (-6-y)^2
\]
\[
(1-x)^2 = (5-x)^2
\]
\[
(1-x)^2 = (5-x)^2
\]
\[
1 – 2x + x^2 = 25 – 10x + x^2
\]
\[
8x = 24
\]
\[
x = 3
\]
\[
d_2 = d_3
\]
\[
\sqrt{(5-x)^2 + (-6-y)^2} = \sqrt{(6-x)^2 + (-1-y)^2}
\]
\[
(5-x)^2 + (-6-y)^2 = (6-x)^2 + (-1-y)^2
\]
\[
25 – 10x + x^2 + 36 + 12y + y^2 = 36 – 12x + x^2 + 1 + 2y + y^2
\]
\[
2x + 10y = -24
\]
\[
2(3) + 10y = -24
\]
\[
10y = -30
\]
\[
y = -3
\]
$ \therefore P(3,-3) \leftarrow \text{answer} $